Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Virol J ; 20(1): 97, 2023 05 19.
Article in English | MEDLINE | ID: covidwho-2322368

ABSTRACT

BACKGROUND: SARS-CoV-2 was reported to induce cell fusions to form multinuclear syncytia that might facilitate viral replication, dissemination, immune evasion, and inflammatory responses. In this study, we have reported the types of cells involved in syncytia formation at different stages of COVID-19 disease through electron microscopy. METHODS: Bronchoalveolar fluids from the mild (n = 8, SpO2 > 95%, no hypoxia, within 2-8 days of infection), moderate (n = 8, SpO2 90% to ≤ 93% on room air, respiratory rate ≥ 24/min, breathlessness, within 9-16 days of infection), and severe (n = 8, SpO2 < 90%, respiratory rate > 30/min, external oxygen support, after 17th days of infection) COVID-19 patients were examined by PAP (cell type identification), immunofluorescence (for the level of viral infection), scanning (SEM), and transmission (TEM) electron microscopy to identify the syncytia. RESULTS: Immunofluorescence studies (S protein-specific antibodies) from each syncytium indicate a very high infection level. We could not find any syncytial cells in mildly infected patients. However, identical (neutrophils or type 2 pneumocytes) and heterotypic (neutrophils-monocytes) plasma membrane initial fusion (indicating initiation of fusion) was observed under TEM in moderately infected patients. Fully matured large-size (20-100 µm) syncytial cells were found in severe acute respiratory distress syndrome (ARDS-like) patients of neutrophils, monocytes, and macrophage origin under SEM. CONCLUSIONS: This ultrastructural study on the syncytial cells from COVID-19 patients sheds light on the disease's stages and types of cells involved in the syncytia formations. Syncytia formation was first induced in type II pneumocytes by homotypic fusion and later with haematopoetic cells (monocyte and neutrophils) by heterotypic fusion in the moderate stage (9-16 days) of the disease. Matured syncytia were reported in the late phase of the disease and formed large giant cells of 20 to 100 µm.


Subject(s)
COVID-19 , Humans , COVID-19/metabolism , SARS-CoV-2 , Microscopy, Electron , Alveolar Epithelial Cells , Macrophages , Giant Cells
2.
Int J Mol Sci ; 24(5)2023 Mar 05.
Article in English | MEDLINE | ID: covidwho-2279022

ABSTRACT

Culturing respiratory epithelial cells at an air-liquid interface (ALI) represents an established method for studies on infection or toxicology by the generation of an in vivo-like respiratory tract epithelial cellular layer. Although primary respiratory cells from a variety of animals have been cultured, an in-depth characterization of canine tracheal ALI cultures is lacking despite the fact that canines are a highly relevant animal species susceptible to various respiratory agents, including zoonotic pathogens such as severe acute respiratory coronavirus 2 (SARS-CoV-2). In this study, canine primary tracheal epithelial cells were cultured under ALI conditions for four weeks, and their development was characterized during the entire culture period. Light and electron microscopy were performed to evaluate cell morphology in correlation with the immunohistological expression profile. The formation of tight junctions was confirmed using transepithelial electrical resistance (TEER) measurements and immunofluorescence staining for the junctional protein ZO-1. After 21 days of culture at the ALI, a columnar epithelium containing basal, ciliated and goblet cells was seen, resembling native canine tracheal samples. However, cilia formation, goblet cell distribution and epithelial thickness differed significantly from the native tissue. Despite this limitation, tracheal ALI cultures could be used to investigate the pathomorphological interactions of canine respiratory diseases and zoonotic agents.


Subject(s)
Cell Culture Techniques , Epithelial Cells , Animals , Dogs , Cells, Cultured , Epithelial Cells/metabolism , Microscopy, Electron
4.
PLoS Comput Biol ; 18(5): e1010121, 2022 05.
Article in English | MEDLINE | ID: covidwho-1846916

ABSTRACT

The nucleocapsid (N) protein of the SARS-CoV-2 virus, the causal agent of COVID-19, is a multifunction phosphoprotein that plays critical roles in the virus life cycle, including transcription and packaging of the viral RNA. To play such diverse roles, the N protein has two globular RNA-binding modules, the N- (NTD) and C-terminal (CTD) domains, which are connected by an intrinsically disordered region. Despite the wealth of structural data available for the isolated NTD and CTD, how these domains are arranged in the full-length protein and how the oligomerization of N influences its RNA-binding activity remains largely unclear. Herein, using experimental data from electron microscopy and biochemical/biophysical techniques combined with molecular modeling and molecular dynamics simulations, we show that, in the absence of RNA, the N protein formed structurally dynamic dimers, with the NTD and CTD arranged in extended conformations. However, in the presence of RNA, the N protein assumed a more compact conformation where the NTD and CTD are packed together. We also provided an octameric model for the full-length N bound to RNA that is consistent with electron microscopy images of the N protein in the presence of RNA. Together, our results shed new light on the dynamics and higher-order oligomeric structure of this versatile protein.


Subject(s)
Coronavirus Nucleocapsid Proteins , SARS-CoV-2 , COVID-19 , Coronavirus Nucleocapsid Proteins/chemistry , Coronavirus Nucleocapsid Proteins/metabolism , Humans , Microscopy, Electron , Molecular Dynamics Simulation , Nucleocapsid Proteins/chemistry , Nucleocapsid Proteins/metabolism , Phosphoproteins/metabolism , Protein Binding , RNA, Viral/genetics , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , SARS-CoV-2/metabolism
7.
Microsc Res Tech ; 85(7): 2740-2747, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1772723

ABSTRACT

The identification of viral particles within a tissue specimen requires specific knowledge of viral ultrastructure and replication, as well as a thorough familiarity with normal subcellular organelles. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has underscored how challenging the task of identifying coronavirus by electron microscopy (EM) can be. Numerous articles have been published mischaracterizing common subcellular structures, including clathrin- or coatomer- coated vesicles, multivesicular bodies, and rough endoplasmic reticulum, as coronavirus particles in SARS-CoV-2 positive patient tissue specimens. To counter these misinterpretations, we describe the morphological features of coronaviruses that should be used to differentiate coronavirus particles from subcellular structures. Further, as many of the misidentifications of coronavirus particles have stemmed from attempts to attribute tissue damage to direct infection by SARS-CoV-2, we review articles describing ultrastructural changes observed in specimens from SARS-CoV-2-infected individuals that do not necessarily provide EM evidence of direct viral infection. Ultrastructural changes have been observed in respiratory, cardiac, kidney, and intestinal tissues, highlighting the widespread effects that SARS-CoV-2 infection may have on the body, whether through direct viral infection or mediated by SARS-CoV-2 infection-induced inflammatory and immune processes. HIGHLIGHTS: The identification of coronavirus particles in SARS-CoV-2 positive tissues continues to be a challenging task. This review provides examples of coronavirus ultrastructure to aid in the differentiation of the virus from common cellular structures.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Microscopy, Electron , Pandemics
8.
Ultrastruct Pathol ; 46(1): 1-17, 2022 Jan 02.
Article in English | MEDLINE | ID: covidwho-1684272

ABSTRACT

Research centers around the world are competing to develop therapeutic and prophylactic agents to provide new intervention strategies that could halt or even help slow the progression of the COVID19 pandemic. This requires a deep understanding of the biology and cytopathology of the interaction of SARS-CoV-2 with the cell. This review highlights the importance of electron microscopy (EM) in better understanding the morphology, the subcellular morphogenesis, and pathogenesis of SARS-CoV-2, given its nanometric dimensions. The study also underscores the value of cryo-electron microscopy for analyzing the structure of viral protein complex at atomic resolution in its native state and the development of novel antibodies, vaccines, and therapies targeting the trimeric S spike proteins and the viral replication organelles. This review highlighted the emergence in a short period of time of several viral variants of concern with enhanced transmissibility and increased infectivity. This is due to the elevated affinity of the host receptor with acquired adaptive mutations in the spike protein gene of the virus.Subsequently, to the technical improvement of EM resolutions and the recent promising results with SARS-CoV2 variant structure determination, antibodies production, and vaccine development, it is necessary to maximize our investigations regarding the potential occurrence of immune pressure and viral adaptation secondary to repeated infection and vaccination.


Subject(s)
COVID-19 , SARS-CoV-2 , Cryoelectron Microscopy , Humans , Microscopy, Electron , RNA, Viral
9.
Viruses ; 14(2)2022 01 20.
Article in English | MEDLINE | ID: covidwho-1650717

ABSTRACT

The pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has impacted public health and the world economy and fueled a worldwide race to approve therapeutic and prophylactic agents, but so far there are no specific antiviral drugs. Understanding the biology of the virus is the first step in structuring strategies to combat it, and in this context several studies have been conducted with the aim of understanding the replication mechanism of SARS-CoV-2 in vitro systems. In this work, studies using transmission and scanning electron microscopy and 3D electron microscopy modeling were performed with the goal of characterizing the morphogenesis of SARS-CoV-2 in Vero-E6 cells. Several ultrastructural changes were observed-such as syncytia formation, cytoplasmic membrane projections, lipid droplets accumulation, proliferation of double-membrane vesicles derived from the rough endoplasmic reticulum, and alteration of mitochondria. The entry of the virus into cells occurred through endocytosis. Viral particles were observed attached to the cell membrane and in various cellular compartments, and extrusion of viral progeny took place by exocytosis. These findings allow us to infer that Vero-E6 cells are highly susceptible to SARS-CoV-2 infection as described in the literature and their replication cycle is similar to that described with SARS-CoV and MERS-CoV in vitro models.


Subject(s)
Microscopy, Electron, Transmission/methods , Microscopy, Electron/methods , SARS-CoV-2/metabolism , SARS-CoV-2/ultrastructure , Animals , Cell Line , Chlorocebus aethiops , SARS-CoV-2/chemistry , Vero Cells , Virus Internalization , Virus Replication
10.
Life Sci Alliance ; 5(4)2022 04.
Article in English | MEDLINE | ID: covidwho-1614505

ABSTRACT

The current COVID-19 pandemic is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The positive-sense single-stranded RNA virus contains a single linear RNA segment that serves as a template for transcription and replication, leading to the synthesis of positive and negative-stranded viral RNA (vRNA) in infected cells. Tools to visualize vRNA directly in infected cells are critical to analyze the viral replication cycle, screen for therapeutic molecules, or study infections in human tissue. Here, we report the design, validation, and initial application of FISH probes to visualize positive or negative RNA of SARS-CoV-2 (CoronaFISH). We demonstrate sensitive visualization of vRNA in African green monkey and several human cell lines, in patient samples and human tissue. We further demonstrate the adaptation of CoronaFISH probes to electron microscopy. We provide all required oligonucleotide sequences, source code to design the probes, and a detailed protocol. We hope that CoronaFISH will complement existing techniques for research on SARS-CoV-2 biology and COVID-19 pathophysiology, drug screening, and diagnostics.


Subject(s)
COVID-19/diagnosis , In Situ Hybridization, Fluorescence/methods , RNA, Viral/genetics , SARS-CoV-2/genetics , Virus Replication/genetics , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Animals , Antiviral Agents/pharmacology , COVID-19/virology , Caco-2 Cells , Cell Line, Tumor , Chlorocebus aethiops , Humans , In Situ Hybridization/methods , Microscopy, Electron/methods , RNA, Viral/ultrastructure , Reproducibility of Results , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Sensitivity and Specificity , Vero Cells , Virus Release/drug effects , Virus Release/genetics , Virus Release/physiology , Virus Replication/drug effects , Virus Replication/physiology , COVID-19 Drug Treatment
11.
Microsc Res Tech ; 85(5): 1976-1989, 2022 May.
Article in English | MEDLINE | ID: covidwho-1568138

ABSTRACT

Electron microscope (EM) was developed in 1931 and since then microscopical examination of both the biological and non-biological samples has been revolutionized. Modifications in electron microscopy techniques, such as scanning EM and transmission EM, have widened their applicability in the various sectors such as understanding of drug toxicity, development of mechanism, criminal site investigation, and characterization of the nano-molecule. The present review summarizes its role in important aspects such as toxicity assessment and disease diagnosis in special reference to SARS-COV2. In the biological system, EM studies have elucidated the impact of toxicants at the ultra-structural level in various tissue in conformity to physiological alterations. Thus, EM can be concluded as an important tool in toxicity assessment and disease prognosis.


Subject(s)
COVID-19 , RNA, Viral , Humans , Microscopy, Electron , Microscopy, Electron, Scanning , SARS-CoV-2
12.
Am J Obstet Gynecol ; 225(6): 593.e1-593.e9, 2021 12.
Article in English | MEDLINE | ID: covidwho-1439825

ABSTRACT

Pregnant individuals infected with SARS-CoV-2 have higher rates of intensive care unit admission, oxygen requirement, need for mechanical ventilation, and death than nonpregnant individuals. Increased COVID-19 disease severity may be associated with an increased risk of viremia and placental infection. Maternal SARS-CoV-2 infection is also associated with pregnancy complications such as preeclampsia and preterm birth, which can be either placentally mediated or reflected in the placenta. Maternal viremia followed by placental infection may lead to maternal-fetal transmission (vertical), which affects 1% to 3% of exposed newborns. However, there is no agreed-upon or standard definition of placental infection. The National Institutes of Health/Eunice Kennedy Shriver National Institute of Child Health and Human Development convened a group of experts to propose a working definition of placental infection to inform ongoing studies of SARS-CoV-2 during pregnancy. Experts recommended that placental infection be defined using techniques that allow virus detection and localization in placental tissue by one or more of the following methods: in situ hybridization with antisense probe (detects replication) or a sense probe (detects viral messenger RNA) or immunohistochemistry to detect viral nucleocapsid or spike proteins. If the abovementioned methods are not possible, reverse transcription polymerase chain reaction detection or quantification of viral RNA in placental homogenates, or electron microscopy are alternative approaches. A graded classification for the likelihood of placental infection as definitive, probable, possible, and unlikely was proposed. Manuscripts reporting placental infection should describe the sampling method (location and number of samples collected), method of preservation of tissue, and detection technique. Recommendations were made for the handling of the placenta, examination, and sampling and the use of validated reagents and sample protocols (included as appendices).


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Placenta Diseases/diagnosis , Placenta Diseases/virology , Pregnancy Complications, Infectious/diagnosis , Pregnancy Complications, Infectious/virology , SARS-CoV-2 , COVID-19 Nucleic Acid Testing , Consensus , Female , Guidelines as Topic , Humans , Immunohistochemistry , In Situ Hybridization , Microscopy, Electron , National Institute of Child Health and Human Development (U.S.) , Pregnancy , United States/epidemiology
13.
Viruses ; 13(9)2021 09 09.
Article in English | MEDLINE | ID: covidwho-1411084

ABSTRACT

A variety of immunolabeling procedures for both light and electron microscopy were used to examine the cellular origins of the host membranes supporting the SARS-CoV-2 replication complex. The endoplasmic reticulum has long been implicated as a source of membrane for the coronavirus replication organelle. Using dsRNA as a marker for sites of viral RNA synthesis, we provide additional evidence supporting ER as a prominent source of membrane. In addition, we observed a rapid fragmentation of the Golgi apparatus which is visible by 6 h and complete by 12 h post-infection. Golgi derived lipid appears to be incorporated into the replication organelle although protein markers are dispersed throughout the infected cell. The mechanism of Golgi disruption is undefined, but chemical disruption of the Golgi apparatus by brefeldin A is inhibitory to viral replication. A search for an individual SARS-CoV-2 protein responsible for this activity identified at least five viral proteins, M, S, E, Orf6, and nsp3, that induced Golgi fragmentation when expressed in eukaryotic cells. Each of these proteins, as well as nsp4, also caused visible changes to ER structure as shown by correlative light and electron microscopy (CLEM). Collectively, these results imply that specific disruption of the Golgi apparatus is a critical component of coronavirus replication.


Subject(s)
Endoplasmic Reticulum/virology , Golgi Apparatus/virology , SARS-CoV-2/physiology , Virus Replication , Animals , Chlorocebus aethiops , Coronavirus M Proteins/physiology , Coronavirus M Proteins/ultrastructure , Endoplasmic Reticulum/ultrastructure , Golgi Apparatus/ultrastructure , Humans , Intracellular Membranes/ultrastructure , Intracellular Membranes/virology , Microscopy, Electron , SARS-CoV-2/ultrastructure , Vero Cells , Viral Structural Proteins/physiology , Viral Structural Proteins/ultrastructure
14.
Cardiovasc Pathol ; 52: 107338, 2021.
Article in English | MEDLINE | ID: covidwho-1385193
15.
Cardiovasc Pathol ; 52: 107337, 2021.
Article in English | MEDLINE | ID: covidwho-1385192
18.
Cell Host Microbe ; 28(6): 853-866.e5, 2020 12 09.
Article in English | MEDLINE | ID: covidwho-1385263

ABSTRACT

Pathogenesis induced by SARS-CoV-2 is thought to result from both an inflammation-dominated cytokine response and virus-induced cell perturbation causing cell death. Here, we employ an integrative imaging analysis to determine morphological organelle alterations induced in SARS-CoV-2-infected human lung epithelial cells. We report 3D electron microscopy reconstructions of whole cells and subcellular compartments, revealing extensive fragmentation of the Golgi apparatus, alteration of the mitochondrial network and recruitment of peroxisomes to viral replication organelles formed by clusters of double-membrane vesicles (DMVs). These are tethered to the endoplasmic reticulum, providing insights into DMV biogenesis and spatial coordination of SARS-CoV-2 replication. Live cell imaging combined with an infection sensor reveals profound remodeling of cytoskeleton elements. Pharmacological inhibition of their dynamics suppresses SARS-CoV-2 replication. We thus report insights into virus-induced cytopathic effects and provide alongside a comprehensive publicly available repository of 3D datasets of SARS-CoV-2-infected cells for download and smooth online visualization.


Subject(s)
COVID-19/genetics , Endoplasmic Reticulum/ultrastructure , SARS-CoV-2/ultrastructure , Viral Replication Compartments/ultrastructure , COVID-19/diagnostic imaging , COVID-19/pathology , COVID-19/virology , Cell Death/genetics , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/virology , Humans , Microscopy, Electron , Pandemics , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Viral Replication Compartments/metabolism , Virus Replication/genetics
19.
Pediatr Nephrol ; 36(11): 3789-3793, 2021 11.
Article in English | MEDLINE | ID: covidwho-1361293

ABSTRACT

BACKGROUND: Histological findings of kidney involvement have been rarely reported in pediatric patients with SARS-CoV-2 infection. Here, we describe clinical, laboratory, and histological findings of two pediatric cases with almost exclusive kidney involvement by SARS-CoV-2. RESULTS: A 10-year-old girl with IgA vasculitis nephritis underwent kidney biopsy, showing diffuse and segmental mesangial-proliferative glomerulonephritis, and steroid therapy was initiated. After the worsening of the clinical picture, including an atypical skin rash, she was diagnosed with SARS-CoV-2. The re-evaluation of initial biopsy showed cytoplasmatic blebs and virus-like particles in tubular cells at electron microscopy. Despite SARS-CoV-2 clearance and the intensification of immunosuppression, no improvement was observed. A second kidney biopsy showed a crescentic glomerulonephritis with sclerosis, while virus-like particles were no longer evident. The second patient was a 12-year-old girl with a 3-week history of weakness and weight loss. Rhinitis was reported the month before. No medications were being taken. Blood and urine analysis revealed elevated serum creatinine, hypouricemia, low molecular weight proteinuria, and glycosuria. A high SARS-CoV-2-IgG titre was detected. Kidney biopsy showed acute tubular-interstitial nephritis. Steroid therapy was started with a complete resolution of kidney involvement. CONCLUSION: We can speculate that in both cases SARS-CoV-2 played a major role as inflammatory trigger of the kidney damage. Therefore, we suggest investigating the potential kidney damage by SARS-CoV-2 in children. Moreover, SARS-CoV-2 can be included among infectious agents responsible for pediatric acute tubular interstitial nephritis.


Subject(s)
COVID-19/complications , Glomerulonephritis, IGA/immunology , Kidney/pathology , Nephritis, Interstitial/immunology , SARS-CoV-2/immunology , Biopsy , COVID-19/immunology , COVID-19/virology , Child , Female , Glomerulonephritis, IGA/diagnosis , Glomerulonephritis, IGA/pathology , Glomerulonephritis, IGA/virology , Humans , Kidney/immunology , Kidney/ultrastructure , Kidney/virology , Microscopy, Electron , Nephritis, Interstitial/diagnosis , Nephritis, Interstitial/pathology , Nephritis, Interstitial/virology , SARS-CoV-2/isolation & purification
20.
J Cutan Pathol ; 49(1): 17-28, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1349942

ABSTRACT

BACKGROUND: The abundance of publications of COVID-19-induced chilblains has resulted in a confusing situation. METHODS: This is a prospective single-institution study from 15 March to 13 May 2020. Thirty-two patients received PCR nasopharyngeal swabs. Of these, 28 patients had a thoracic CT-scan, 31 patients had blood and urine examinations, 24 patients had skin biopsies including immunohistochemical and direct immunofluorescence studies, and four patients had electron microscopy. RESULTS: COVID-19-induced chilblains are clinically and histopathologically identical to chilblains from other causes. Although intravascular thrombi are sometimes observed, no patient had a systemic coagulopathy or severe clinical course. The exhaustive clinical, radiological, and laboratory work-up in this study ruled-out other primary and secondary causes. Electron microscopy revealed rare, probable viral particles whose core and spikes measured from 120 to 133 nm within endothelium and eccrine glands in two cases. CONCLUSION: This study provides further clinicopathologic evidence of COVID-19-related chilblains. Negative PCR and antibody tests do not rule-out infection. Chilblains represent a good prognosis, occurring later in the disease course. No systemic coagulopathy was identified in any patient. Patients presenting with acral lesions should be isolated, and chilblains should be distinguished from thrombotic lesions (livedo racemosa, retiform purpura, or ischemic acral necrosis).


Subject(s)
COVID-19/complications , COVID-19/diagnosis , Chilblains/etiology , Chilblains/pathology , Toes/pathology , Adolescent , Adult , Aged , Biopsy/methods , COVID-19/metabolism , COVID-19/virology , Chilblains/diagnosis , Chilblains/virology , Child , Diagnosis, Differential , Eccrine Glands/pathology , Eccrine Glands/ultrastructure , Eccrine Glands/virology , Endothelium/pathology , Endothelium/ultrastructure , Endothelium/virology , Female , Humans , Livedo Reticularis/pathology , Male , Microscopy, Electron/methods , Middle Aged , Prognosis , Prospective Studies , Purpura/pathology , SARS-CoV-2/genetics , Skin/pathology , Toes/virology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL